

Team 1: Tommy Voelker, Meghan Kerfoot, Abbey Clutterbuck, Nayeli Yanez, Brady Quintard

Problem Statement

In America Today There Are...

57 million elderly people (over the age of 65)

39 million people with physical limitations

57% of household accidents occurring in the kitchen

Wrist Strength

- Endurance time for max wrist exertion is
 ~2-3 seconds
- Wrist strength diminishes ~30% into old age
- Wrist injuries are one of the most common injuries among the elderly

Testimonials

"Cooking gives me freedom that I don't have in many areas of life... lifting and tipping is really hard. I'm always afraid I'll hurt myself with my bad joints."

- Susan, 76

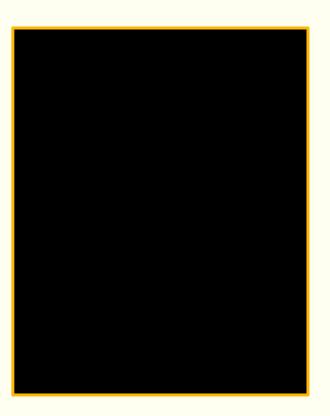
Users with decreased physical capacity struggle to maneuver heavy items in the kitchen, reducing their autonomy and impairing their safety.

POV Statement

Elderly people and those with physical limitations need a simple and safe way to handle heavy pots in order to prevent injuries from hot surfaces in the kitchen and make cooking more accessible.

Potential User & Purchaser

Potential User & Purchaser


User: elderly or physically disabled people with weakened strength and joint mobility

Purchaser: users themselves, caretakers, and assisted living communities (such as Kendal)

State of the Art

Current Solution

State of the Art

Lightweight Cookware

- Doesn't address ergonomics
- Most of weight in the liquid

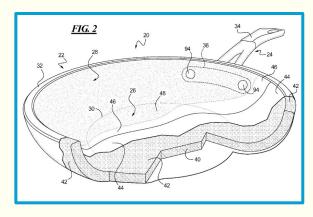
Brew Kettle

- Too large for everyday use
- Users need to replace pots

State of the Art Cont.

Water Siphon

- Hard to clean
- Potentially dangerous



Patent Search

US20200337500A1

 Challenging to make a watertight, easy to use seal

US20110073602

 Don't address the ergonomic challenge of pouring out the pot

Specifications

Specification	Temperature Regulation	Stability	Ease of Use	Performance	Size	Weight	Strength	Precision
Justification	Safety sub-spec, essential for protection of users	Important stand holds the weight of pot on a flat surface	Critical to cater to the needs of our potential users: elderly people	It should help fully empty the pot rather than making it more difficult to empty	Hold average sized pots already used in the kitchen	User should be able to lift and carry the product with minimal effort	Device should stand without shifting	Product should pour out contents in a controlled and accurate fashion
Weighting	0.8	0.8	0.8	0.7	0.8	0.8	0.9	0.8
Quantification	Contact material stays below 120°F	Pot lays flat when placed in device	Test with users and ask for feedback, 1-5 scale of how easy it was to use	Measuring angle the mechanism can rotate 90 degrees	Hold pots with diameter between 20-25 cm	Under 3 kg	Can hold 15 kg pot without moving	Measure amount of liquid is collected at different levels of precision

Alternatives Matrix

	Specifications	Strength	Stability	Ease of Use	Precision	Size	Weight	Temp Regulation	Performance	Safe	Legal	Ethical	TOTAL
Solutions	Weighting	9	8	8	8	8	8	8	7	10	10	10	
Pot with drainage spigot & lever on side		5	5	4	5	4	4	4	5	5	5	5	438
Pot with drainage holes & plugs		5	2	5	4	5	4	3	4	5	5	5	407
	Pump mechanism to remove water		5	3	3	2	3	5	2	5	5	5	359
Track & cart t	to bring pot to sink	3	3	5	2	1	2	5	4	5	5	5	299
	nandle that drops ttom out	3	2	3	3	4	3	4	5	4	5	5	354
Pivot mech	anism to tilt pot	4	5	5	5	4	4	5	5	5	5	5	445
	ed bottom for easy tilting	3	3	4	3	4	4	4	4	5	5	5	381
Siphonin stoppe	g metal tube & r, with mesh	5	5	4	4	4	5	3	3	5	5	5	416
	uilt-in, removable blander	5	4	5	5	5	4	4	5	5	5	5	446
Heat-sa	afe pot cover	3	4	5	3	5	5	4	3	5	5	5	406

Idea Pivot

Straining pot with a built-in colander

Idea Shift

Pot tipping device inspired by the portagarrafón from Mexico

Factors Contributing to The Pivot

Feedback from Polly: "It's the pour, the twist, and the aiming that's challenging."

Feedback from review board: "overengineered, limited versatility"

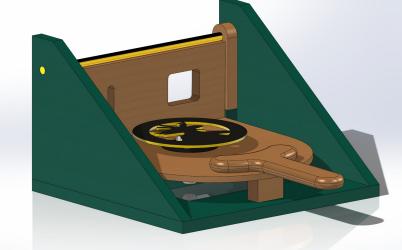
Inspiration from preexisting mechanisms

EASY TIP:

Mechanism that helps the user tilt pot

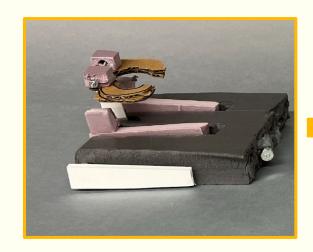
Alternatives Matrix with Updated Weightings

	Specifications	Temp Regulation	Stability	Ease of Use	Precision	Size	Performance	Strength	Weight	Safe	Legal	Ethical	TOTAL
Solutions	Weighting	10	10	9	9	8	8	8	7	10	10	10	
Pot with drainage spigot & lever on side		4	5	4	5	4	5	5	4	5	5	5	461
Pot with drainage holes & plugs		3	2	5	4	5	4	5	4	5	5	5	421
Pump mechanism to remove water		5	5	3	3	2	2	3	3	5	5	5	381
Track & cart to bring pot to sink		5	З	5	2	1	4	3	2	5	5	5	321
	andle that drops tom out	4	2	3	3	4	5	3	3	4	5	5	371
Pivot mech	anism to tilt pot	5	5	5	5	4	5	4	4	5	5	5	472
	ed bottom for easy ilting	4	3	4	3	4	4	3	4	5	5	5	399
Siphoning stopper	g metal tube & r, with mesh	3	5	4	4	4	3	5	5	5	5	5	433
	ıilt-in, removable lander	4	4	5	5	5	5	5	4	5	5	5	468
Heat-sa	fe pot cover	4	4	5	3	5	3	3	5	5	5	5	425



Our Solution

Our Solution





+

Feature #1 - The Stand

Flat Surface for pot

Too weak for this weight

Center of mass stays above stand

Uneven surface for pot

Flat surface for pot

Center of mass stays above stand

Feature #2 - The Lever

Wood

Lighter & easier to work with

Too weak for this weight

Brass

Much stronger

More rigid

Feature #2 - The Lever

Side Lever

Visually pleasing, less space

Much harder to pull

Handle

More force advantage

More ergonomic grip, 96% preferred

Feature #3 - Straps

Vice

Secure but clunky

Buckle

Secure but hard to use

Double D Ring

Hard to use

Velcro Cinch Strap

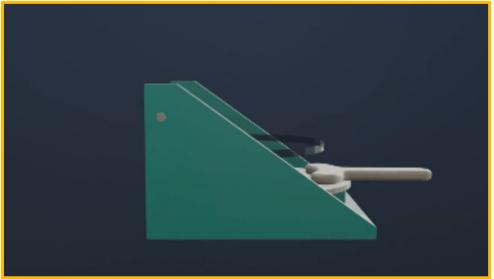
Secure & easy!

Feature #3 - Straps

Plain Velcro

Light/Cheap

Floppy


Epoxy Reinforced Nylon

Cloth dissipates heat

Adds rigidity

Feature #4 - Height Adjustment

Spinning Plate

Easy to use, adjustable, increased precision

Slightly heavier

Final Product

Calculations

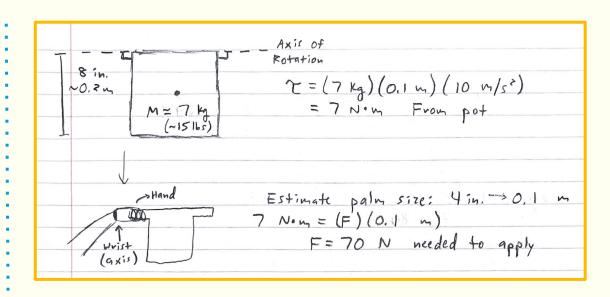
	Total Area (3/4" plywood)									
	Piece	Quartity	Area (in')	Total (in')						
	Side	\$	74,25	148.5						
	Gysset	?	3,125	6, 25						
	Botton	1	->	157.9						
	Base	1	->	157.4						
	Handle	1	→	~ 79						
	Back	1		50.25						
	Rod attachments	2	7.57	15,14						
			Total:	570.44						
	& Excluding	rod, screws,	t plates:							
	Volume = 3 (total) + Block with block = 3 in 3									
	5	430.83 123								
DI.	100 S L> x (110	g)/(21.75 in3)	= [7.18 kg] of 1	vooden pieces						
-1141	Plywood { \(\times \times \left(110 g \right) / (21.75 in 3) = \(\frac{2.18 \times \text{ Fig.}}{\times \text{Mensured density for plywood}} \) of wooden pieces									
	= 4.81 lbs									
	1141 163									
	Aluminymi									
		sides to 3 6	oars in a triang	le						
	-> Reducina	block to 0.5	in S (small stopper							
	-> Reducing block to 0.5 in (small stopper) -> Reducing bottom to 4 ban frame									
	-> Reducina	handle to 1	- bar							
	→ Reducing handle to 1 bar → All other pieces thin aluminum estimate									
	New estimate: Bons + Plates (0.08" +Lick)									
	New estimate: Bans + Plates (0.08" thick) 0.93 kg + 0.83* kg = [1.76 > kg]									
	J. 88 1bs									
	*Lighten & more durable than plywood									
	7 - 1711	+ . 70 00	THE PHOO	4						

Materials Analysis

Conclusion: aluminum and polycarbonate would be lighter for the future, and polycarbonate would be more sustainable, but wood meets our specifications

Polycanbonate: Sustainability Using a thickness of 0.1"

E density 19.7 g/in 3


Ly New weight = 1.1 > kg

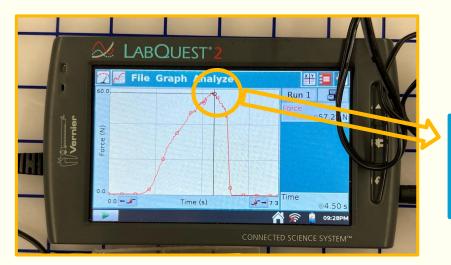
Force Analysis

Tipping by hand places lots of strain on the wrist

8

Endurance time for this exertion poses a risk

Average wrist flexor exertion for a healthy person: 70 N



Strength Tests

LabQuest-compatible force sensor

Using the side lever, 57.2 N to lift

Using the handle on the end of the base, 23.3 N to lift!

Strength

Weight

Size

Spec:

Hold at least 15 kg

Model:

 Fits pots up to 27 cm in diameter

Spec:

Weighs under 3 kg

Model:

Weighs 5.5 kg

Spec:

Fits pots 20-25 cm in diameter

Model:

 Fits pots up to 27 cm in diameter

Performance - Tipping Stop

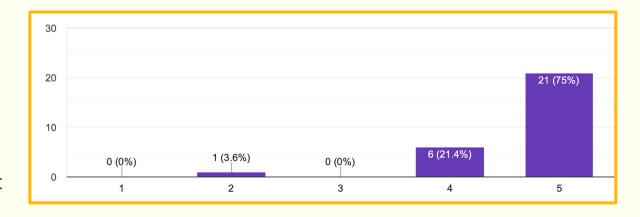
AT REST	2.15°	
AT MAXIMUM	99.15°	

- Demonstrated 97° of free rotation
- Stopped within 10° of vertical

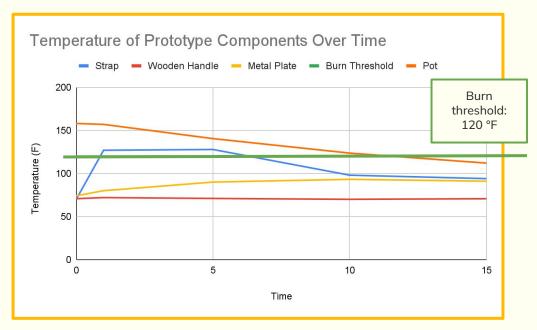
Stability

Spec:

Stability


Test:

- User feedback (28 users)
- Check for wobble


Results:

- Very little wobble
- Users largely said it felt very stable

Rank the stability of the product on a scale of 1 to 5.

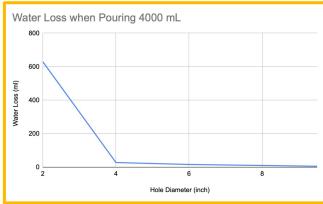
Temperature Testing

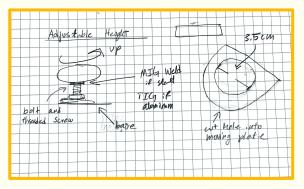
Spec:

Temperature regulation

Test:

- Put materials in contact with a pot of boiling water
- Measure temperature over time


Results:


- Dual strap heated up significantly less than velcro
- Handle showed little to no increase in temperature

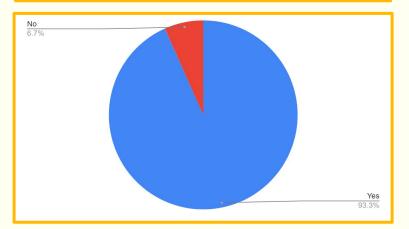
Precision Testing

Spec:

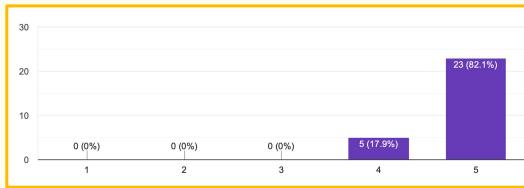
Precision

Test:

 Pouring into targets of different size


Results:

 The ability to adjust height contributed to the precision of pour


Would you use this product?

82.1% of all users ranked 5/5 on ease of use specification

93.3% of users above 75 stated that they would benefit from our product

Rank ease of use on a scale of 1 to 5.

Ethics and Sustainability

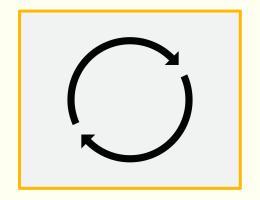
Ethics and Risks

Accessibility

 Our product would allow people with limited mobility to perform tasks requiring hot water

Social Equity

 Ensuring fair treatment of employees



Risks

- Tipping too fast could cause the mechanism to fall
 - Mitigate by creating clear instructions and communicating risks to users

Sustainability

- Meant to only be purchased once per household
- Material allows for durable, long lasting product

Sustainable Materials

- Polycarbonate
- Aluminum

Production

- Meant for a smaller subset of the population
- Wouldn't be mass produced to the extent of creating unnecessary waste

Economics and Business Plan

Key Partners

- · Retirement homes
- Assisted living communities for disabled or elderly people
- · Kitchen supply stores
- Hardware stores
- Manufacturers
- Investors

Key Activities

- Manufacturing
- Distribution
- Marketing

Key Resources

- Factory
- Labor
- Wood
- Materials

Value Proposition

Decreasing the risk of injury for elderly and disabled people when handling heavy pots in the kitchen, making cooking more accessible.

Customer Relationships

- Free demos at retirement communities
- Outreach to town councils on aging

Channels

- Chain assistedliving centers
- Online
- Kitchen supply stores

Customer Segments

- User: elderly or physically disabled people with weakened strength and joint mobility
- Purchaser: users themselves, caretakers, and assisted living communities

Cost Structure

- Bulk materials cost (wood, rod, bolts, etc)
 - Sustainable materials
 - Labor
 - Marketing
 - Shipping

Revenue Streams

- Selling product to retirement / assisted-living communities for residents
- Selling product to individual customers for personal use

Cost Estimation: Variable Costs

- 3/4" Plywood: \$1.25/ft^2 (4 ft^2)
- Brass rod: \$3.50 per unit (1)
- Steel plate: \$5 per unit (1)
- Strap: \$2 per unit (1)
- Screws: \$0.15/unit (8)
- Watco Butcher Block Stain: \$17.28/pint (1/8)
- 3/4 10 bolt: \$2.12 per unit (1)
- ³/₄ 10 nut: \$0.82 (2)
- Spray paint \$6.98/can (1/3)
- Epoxy: \$1

Product Cost \$29.60

Packaging Cost \$2.50

> Total Cost \$32.10

> > Price \$80

Profit \$47.90

Cost Estimation: Fixed Costs

One-Time:

• Equipment - \$20,000

Monthly:

- Payroll \$50,000
- Rent \$4,000
- Utilities \$1,000
- Insurance \$300
- Marketing \$2000
- **Total** \$57,300

Break Even Point - 1200 units

Total US Market Size - 2 million

Funding - ~\$100,000 to reach break even point

Projected 3-Year Cash Flow

Reflections and Next Steps

Business Team Roles

Design and Layout

Tommy

User Outreach

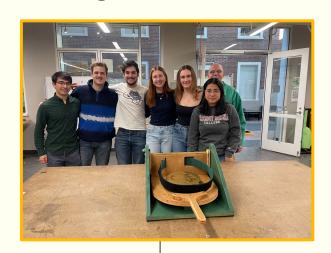
Meghan

Numerical Analysis

Brady

Machining

Nayeli


Prototyping and Refining

Abbey

Teamwork and Project Management

Proved to be especially challenging with our pivot

Timeline

Communication

Successful with consistent team check-ins

Collaboration

Worked to our strengths, very collaborative in building our full-sized model

Conclusions

Specifications Analysis:

Stability	Size	Performance	Strength
Precision	Weight	Temperature	Ease of Use

Key:

Met/exceeds	
Room for improvement	
Not met	

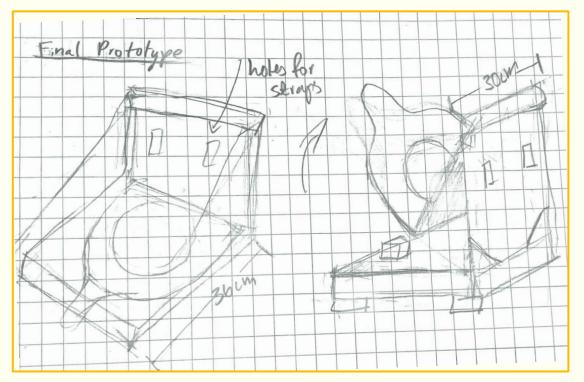
Improvements and Future Plans

Materials Consideration

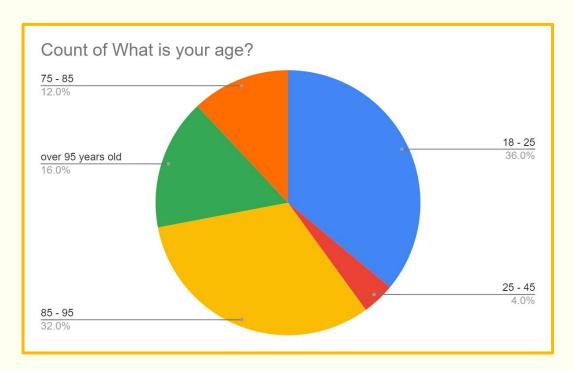
Balance stability, cost, and weight

Test and Prototype Improvements in Design

- Minimize contact with the strap
- Weight optimization
- Countertop space used



Special thanks to Joe and Christian, our TI and TA



Final Prototype Sketch:

Ages of participants in user-testing:

Cutting wood pieces using the bandsaw

Using the milling machine to make holes for screws

Welding bolts and plasma cutting plate for the height adjustable feature

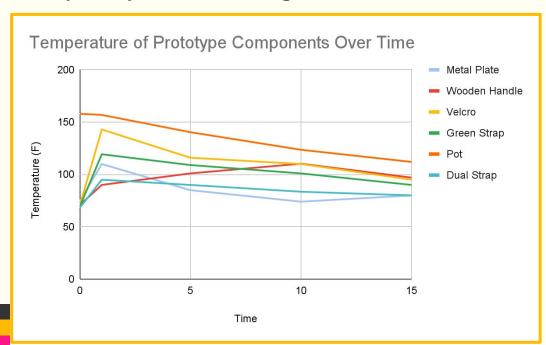
Sustainability Research:

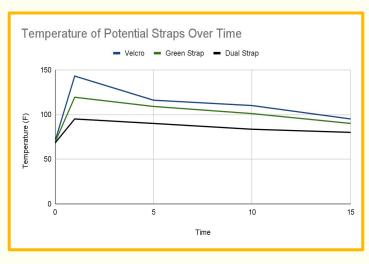
"One of the key ecological advantages of polycarbonate is its exceptional durability and longevity" - (The Eco-Friendly Nature of Polycarbonate: A Sustainable Solution)

"Aluminum is a sturdy material that can withstand heavy foot traffic and is less prone to damage from moisture or impact. Wood, on the other hand, is prone to scratches, dents, and warping over time, especially in high traffic areas." - (Aluminum vs. Wood Thresholds)

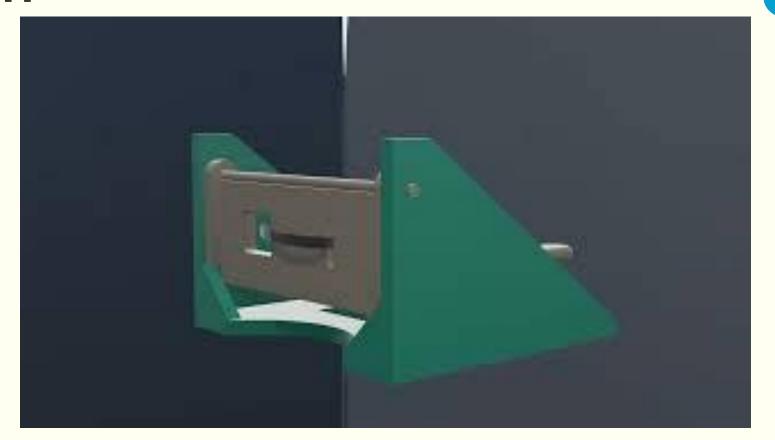
User Testimonials:

"I have a problem with the bones on both hands if I don't keep them straight, so I can't rotate my hands to tip pots. I'm trying not to do that sort of motion."


-Betty, 85


"I do have trouble with that. This is great!" -Jenny, 95

"It's the pour, the twist, and the aiming that's challenging."
- Polly, 74



Strap Temperature Testing

Manufacturing Process

Cut rod for axis of Cut wood pieces out Plasma cut height rotation on chop on laser cutter adjustment plates saw Drill screw holes Sand blast plates, Trim strap & secure with milling machine nuts, bolts connection piece Sand & spray paint Weld nuts and bolts body pieces to plates Assemble wooden Assemble product pieces with screws